博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
2011年05月29日
阅读量:4052 次
发布时间:2019-05-25

本文共 8163 字,大约阅读时间需要 27 分钟。

Linux设备驱动编程之内存与I/O操作 【转】

 2010-07-28 19:15:39 阅读100 评论0  字号: 订阅

 

对于提供了MMU(存储管理器,辅助操作系统进行内存管理,提供虚实地址转换等硬件支持)的处理器而言,Linux提供了复杂的存储管理系统,使得进程所能访问的内存达到4GB

  进程的4GB内存空间被人为的分为两个部分--用户空间与内核空间。用户空间地址分布从03GB(PAGE_OFFSET,在0x86中它等于0xC0000000)3GB4GB为内核空间,如下图:

 

  内核空间中,从3Gvmalloc_start这段地址是物理内存映射区域(该区域中包含了内核镜像、物理页框表mem_map等等),比如我们使用的VMware虚拟系统内存是160M,那么3G3G+160M这片内存就应该映射物理内存。在物理内存映射区之后,就是vmalloc区域。对于160M的系统而言,vmalloc_start位置应在3G+160M附近(在物理内存映射区与vmalloc_start期间还存在一个8Mgap来防止跃界),vmalloc_end的位置接近4G(最后位置系统会保留一片128k大小的区域用于专用页面映射),如下图:

 

  kmallocget_free_page申请的内存位于物理内存映射区域,而且在物理上也是连续的,它们与真实的物理地址只有一个固定的偏移,因此存在较简单的转换关系,virt_to_phys()可以实现内核虚拟地址转化为物理地址:

#define __pa(x) ((unsigned long)(x)-PAGE_OFFSET)

extern inline unsigned long virt_to_phys(volatile void * address)

{

 return __pa(address);

}

  上面转换过程是将虚拟地址减去3GPAGE_OFFSET=0XC000000)。

  与之对应的函数为phys_to_virt(),将内核物理地址转化为虚拟地址:

#define __va(x) ((void *)((unsigned long)(x)+PAGE_OFFSET))

extern inline void * phys_to_virt(unsigned long address)

{

 return __va(address);

}

  virt_to_phys()phys_to_virt()都定义在include\asm-i386\io.h中。

  而vmalloc申请的内存则位于vmalloc_startvmalloc_end之间,与物理地址没有简单的转换关系,虽然在逻辑上它们也是连续的,但是在物理上它们不要求连续。

  我们用下面的程序来演示kmallocget_free_pagevmalloc的区别:

#include <linux/module.h>

#include <linux/slab.h>

#include <linux/vmalloc.h>

MODULE_LICENSE("GPL");

unsigned char *pagemem;

unsigned char *kmallocmem;

unsigned char *vmallocmem;

int __init mem_module_init(void)

{

 //最好每次内存申请都检查申请是否成功

 //下面这段仅仅作为演示的代码没有检查

 pagemem = (unsigned char*)get_free_page(0);

 printk("<1>pagemem addr=%x", pagemem);

 kmallocmem = (unsigned char*)kmalloc(100, 0);

 printk("<1>kmallocmem addr=%x", kmallocmem);

 vmallocmem = (unsigned char*)vmalloc(1000000);

 printk("<1>vmallocmem addr=%x", vmallocmem);

 return 0;

}

void __exit mem_module_exit(void)

{

 free_page(pagemem);

 kfree(kmallocmem);

 vfree(vmallocmem);

}

module_init(mem_module_init);

module_exit(mem_module_exit);

  我们的系统上有160MB的内存空间,运行一次上述程序,发现pagemem的地址在0xc7997000(约3G+121M)、kmallocmem地址在0xc9bc1380(约3G+155M)、vmallocmem的地址在0xcabeb000(约3G+171M)处,符合前文所述的内存布局。

  接下来,我们讨论Linux设备驱动究竟怎样访问外设的I/O端口(寄存器)。

  几乎每一种外设都是通过读写设备上的寄存器来进行的,通常包括控制寄存器、状态寄存器和数据寄存器三大类,外设的寄存器通常被连续地编址。根据CPU体系结构的不同,CPUIO端口的编址方式有两种:

  (1I/O映射方式(I/O-mapped

  典型地,如X86处理器为外设专门实现了一个单独的地址空间,称为"I/O地址空间"或者"I/O端口空间"CPU通过专门的I/O指令(如X86INOUT指令)来访问这一空间中的地址单元。 

2)内存映射方式(Memory-mapped

  RISC指令系统的CPU(如ARMPowerPC等)通常只实现一个物理地址空间,外设I/O端口成为内存的一部分。此时,CPU可以象访问一个内存单元那样访问外设I/O端口,而不需要设立专门的外设I/O指令。

  但是,这两者在硬件实现上的差异对于软件来说是完全透明的,驱动程序开发人员可以将内存映射方式的I/O端口和外设内存统一看作是"I/O内存"资源。

  一般来说,在系统运行时,外设的I/O内存资源的物理地址是已知的,由硬件的设计决定。但是CPU通常并没有为这些已知的外设I/O内存资源的物理地址预定义虚拟地址范围,驱动程序并不能直接通过物理地址访问I/O内存资源,而必须将它们映射到核心虚地址空间内(通过页表),然后才能根据映射所得到的核心虚地址范围,通过访内指令访问这些I/O内存资源。Linuxio.h头文件中声明了函数ioremap(),用来将I/O内存资源的物理地址映射到核心虚地址空间(3GB4GB)中,原型如下:

void * ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags);

  iounmap函数用于取消ioremap()所做的映射,原型如下:

void iounmap(void * addr);

  这两个函数都是实现在mm/ioremap.c文件中。

  在将I/O内存资源的物理地址映射成核心虚地址后,理论上讲我们就可以象读写RAM那样直接读写I/O内存资源了。为了保证驱动程序的跨平台的可移植性,我们应该使用Linux中特定的函数来访问I/O内存资源,而不应该通过指向核心虚地址的指针来访问。如在x86平台上,读写I/O的函数如下所示:

#define readb(addr) (*(volatile unsigned char *) __io_virt(addr))

#define readw(addr) (*(volatile unsigned short *) __io_virt(addr))

#define readl(addr) (*(volatile unsigned int *) __io_virt(addr))

#define writeb(b,addr) (*(volatile unsigned char *) __io_virt(addr) = (b))

#define writew(b,addr) (*(volatile unsigned short *) __io_virt(addr) = (b))

#define writel(b,addr) (*(volatile unsigned int *) __io_virt(addr) = (b))

#define memset_io(a,b,c) memset(__io_virt(a),(b),(c))

#define memcpy_fromio(a,b,c) memcpy((a),__io_virt(b),(c))

#define memcpy_toio(a,b,c) memcpy(__io_virt(a),(b),(c))

  最后,我们要特别强调驱动程序中mmap函数的实现方法。用mmap映射一个设备,意味着使用户空间的一段地址关联到设备内存上,这使得只要程序在分配的地址范围内进行读取或者写入,实际上就是对设备的访问。

  笔者在Linux源代码中进行包含"ioremap"文本的搜索,发现真正出现的ioremap的地方相当少。所以笔者追根索源地寻找I/O操作的物理地址转换到虚拟地址的真实所在,发现Linux有替代ioremap的语句,但是这个转换过程却是不可或缺的。

  譬如我们再次摘取S3C2410这个ARM芯片RTC(实时钟)驱动中的一小段:

static void get_rtc_time(int alm, struct rtc_time *rtc_tm)

{

 spin_lock_irq(&rtc_lock);

 if (alm == 1) {

  rtc_tm->tm_year = (unsigned char)ALMYEAR & Msk_RTCYEAR;

  rtc_tm->tm_mon = (unsigned char)ALMMON & Msk_RTCMON;

  rtc_tm->tm_mday = (unsigned char)ALMDAY & Msk_RTCDAY;

  rtc_tm->tm_hour = (unsigned char)ALMHOUR & Msk_RTCHOUR;

  rtc_tm->tm_min = (unsigned char)ALMMIN & Msk_RTCMIN;

  rtc_tm->tm_sec = (unsigned char)ALMSEC & Msk_RTCSEC;

 }

 else {

  read_rtc_bcd_time:

  rtc_tm->tm_year = (unsigned char)BCDYEAR & Msk_RTCYEAR;

  rtc_tm->tm_mon = (unsigned char)BCDMON & Msk_RTCMON;

  rtc_tm->tm_mday = (unsigned char)BCDDAY & Msk_RTCDAY;

  rtc_tm->tm_hour = (unsigned char)BCDHOUR & Msk_RTCHOUR;

  rtc_tm->tm_min = (unsigned char)BCDMIN & Msk_RTCMIN;

  rtc_tm->tm_sec = (unsigned char)BCDSEC & Msk_RTCSEC;

  if (rtc_tm->tm_sec == 0) {

   

   goto read_rtc_bcd_time;

  }

 }

 spin_unlock_irq(&rtc_lock);

 BCD_TO_BIN(rtc_tm->tm_year);

 BCD_TO_BIN(rtc_tm->tm_mon);

 BCD_TO_BIN(rtc_tm->tm_mday);

 BCD_TO_BIN(rtc_tm->tm_hour);

 BCD_TO_BIN(rtc_tm->tm_min);

 BCD_TO_BIN(rtc_tm->tm_sec);

 

 rtc_tm->tm_year += RTC_LEAP_YEAR - 1900;

 

 rtc_tm->tm_mon--;

}

  I/O操作似乎就是对ALMYEARALMMONALMDAY定义的寄存器进行操作,那这些宏究竟定义为什么呢?

#define ALMDAY bRTC(0x60)

#define ALMMON bRTC(0x64)

#define ALMYEAR bRTC(0x68)

  其中借助了宏bRTC,这个宏定义为:

#define bRTC(Nb) __REG(0x57000000 + (Nb))

  其中又借助了宏__REG,而__REG又定义为:

# define __REG(x) io_p2v(x)

  最后的io_p2v才是真正""虚拟地址和物理地址转换的地方:

#define io_p2v(x) ((x) | 0xa0000000)

  与__REG对应的有个__PREG

# define __PREG(x) io_v2p(x)

  与io_p2v对应的有个io_v2p

#define io_v2p(x) ((x) & ~0xa0000000)

  可见有没有出现ioremap是次要的,关键问题是有无虚拟地址和物理地址的转换!

下面的程序在启动的时候保留一段内存,然后使用ioremap将它映射到内核虚拟空间,同时又用remap_page_range映射到用户虚拟空间,这样一来,内核和用户都能访问。如果在内核虚拟地址将这段内存初始化串"abcd",那么在用户虚拟地址能够读出来:

 

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/errno.h>

#include <linux/mm.h>

#include <linux/wrapper.h>

#include <asm/io.h>

#include <linux/slab.h>

MODULE_PARM(mem_start, "i");

MODULE_PARM(mem_size, "i");

static int mem_start = 101, mem_size = 10;

static char *reserve_virt_addr;

static int major;

int mmapdrv_open(struct inode *inode, struct file *file);

int mmapdrv_release(struct inode *inode, struct file *file);

int mmapdrv_mmap(struct file *file, struct vm_area_struct *vma);

static struct file_operations mmapdrv_fops =

{

 owner: THIS_MODULE, mmap: mmapdrv_mmap, open: mmapdrv_open, release:

 mmapdrv_release,

};

int init_module(void)

{

 if ((major = register_chrdev(0, "mmapdrv", &mmapdrv_fops)) < 0)

 {

  printk("mmapdrv: unable to register character device\n");

  return ( - EIO);

 }

 printk("mmap device major = %d\n", major);

 printk("high memory physical address 0x%ldM\n", virt_to_phys(high_memory) /

1024 / 1024);

 reserve_virt_addr = ioremap(mem_start *1024 * 1024, mem_size *1024 * 1024);

 printk("reserve_virt_addr = 0x%lx\n", (unsigned long)reserve_virt_addr);

 if (reserve_virt_addr)

 {

  int i;

  for (i = 0; i < mem_size *1024 * 1024; i += 4)

  {

   reserve_virt_addr[i] = 'a';

   reserve_virt_addr[i + 1] = 'b';

   reserve_virt_addr[i + 2] = 'c';

   reserve_virt_addr[i + 3] = 'd';

  }

 }

 else

 {

  unregister_chrdev(major, "mmapdrv");

  return - ENODEV;

 }

 return 0;

}

 

void cleanup_module(void)

{

 if (reserve_virt_addr)

  iounmap(reserve_virt_addr);

 unregister_chrdev(major, "mmapdrv");

 return ;

}

int mmapdrv_open(struct inode *inode, struct file *file)

{

 MOD_INC_USE_COUNT;

 return (0);

}

int mmapdrv_release(struct inode *inode, struct file *file)

{

 MOD_DEC_USE_COUNT;

 return (0);

}

int mmapdrv_mmap(struct file *file, struct vm_area_struct *vma)

{

 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;

 unsigned long size = vma->vm_end - vma->vm_start;

 if (size > mem_size *1024 * 1024)

 {

  printk("size too big\n");

  return ( - ENXIO);

 }

 offset = offset + mem_start * 1024 * 1024;

 

 vma->vm_flags |= VM_LOCKED;

 if (remap_page_range(vma, vma->vm_start, offset, size, PAGE_SHARED))

 {

  printk("remap page range failed\n");

  return - ENXIO;

 }

 return (0);

}

  remap_page_range函数的功能是构造用于映射一段物理地址的新页表,实现了内核空间与用户空间的映射,其原型如下:

int remap_page_range(vma_area_struct *vma, unsigned long from, unsigned long to, unsigned long size, pgprot_tprot);

  使用mmap最典型的例子是显示卡的驱动,将显存空间直接从内核映射到用户空间将可提供显存的读写效率。

作者: 宋宝华 出处: 天极开发

 

转载地址:http://jasci.baihongyu.com/

你可能感兴趣的文章
ios framework 通用库的制作
查看>>
出现( linker command failed with exit code 1)错误总结
查看>>
iOS开发中一些常见的并行处理
查看>>
iOS获取手机的Mac地址
查看>>
ios7.1发布企业证书测试包的问题
查看>>
如何自定义iOS中的控件
查看>>
iOS 开发百问
查看>>
Mac环境下svn的使用
查看>>
github简单使用教程
查看>>
如何高效利用GitHub
查看>>
GitHub详细教程
查看>>
Swift概览
查看>>
iOS系统方法进行AES对称加密
查看>>
程序内下载App,不用跳转到AppStore
查看>>
iOS应用崩溃日志分析
查看>>
获取手机系统大小、可用空间大小,设备可用内存及当前应用所占内存等
查看>>
IOS7 开发注意事项
查看>>
iOS开发~CocoaPods使用详细说明
查看>>
在xcode6中使用矢量图(iPhone6置配UI)
查看>>
Mac OS X中Apache开启ssl
查看>>